Finite-Time Projective Synchronization of Fractional-Order Memristive Neural Networks with Mixed Time-Varying Delays

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

متن کامل

Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems

Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...

متن کامل

Anti-synchronization of coupled memristive neutral-type neural networks with mixed time-varying delays via randomly occurring control

In this paper, a class of coupled memristive neural networks of neutral type with mixed timevarying delays via randomly occurring control is studied in order to achieve anti-synchronization. Themodel of the coupled memristive neural networks of neutral type with mixed time-varying delays is less conservative than those of traditional memristive neural networks. Some criteria are obtained to gua...

متن کامل

Parameter identification based on finite-time synchronization for Cohen–Grossberg neural networks with time-varying delays∗

Abstract. In this paper, the finite-time synchronization problem for chaotic Cohen–Grossberg neural networks with unknown parameters and time-varying delays is investigated by using finitetime stability theory. Firstly, based on the parameter identification of uncertain delayed neural networks, a simple and effective feedback control scheme is proposed to tackle the unknown parameters of the ad...

متن کامل

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complexity

سال: 2020

ISSN: 1076-2787,1099-0526

DOI: 10.1155/2020/4168705